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1. INTRODUCTION 

In many industrial applications of Statistics it is not reasonable to assume that the same model 
remains adequate as time progresses. Models in which the environment and related parameters 
undergo abrupt changes at unknown moments of time are found to be relevant in a much wider class 
of practical situations. These models spawned a number of fundamental problems in the field of 
the change-point theory, such as the problems of detection of changes (monitoring), estimation of 
the current process parameters (filtering), identifying points of change and regimes (segmentation) 
and tests for data homogeneity. These problems have been addressed, to various extent, in a large 
number of works, including several recent books and review papers (cf. [l-4]). 

Problems related to change-point models are typically relevant in either hxed sample or sequential 
settings. For example, in the problem of on-line detection of a change decisions to trigger an out 
of control signal are made sequentially, based on some stopping variable. Some problems, however, 
can be formulated in both sequential and fixed sample settings. For example, in process capability 
analysis the problem of segmentation involves identifying all the regimes and change-points present 
in a given data set. However, in speech analysis the problem of segmentation is typically relevant 
in a sequential setting, with emphasis placed on identification of the most recent regime. Similarly, 
the problem of estimating parameters at a given point in time can be formulated as a sequential 
(filtering) or a fixed sample (smoothing) settings. In this article we focus on sequential methods, 
with emphasis on the problems of detection and filtering. 

2. DETECTION 

Let {Xi}, i = 1,2,. . . be a sequence of (generally multivariate) observations that may represent, 
for example, proportions of defective items due to various causes, counts of contaminating particles 
of various types observed in successive periods of time, discrepancies between observed sales of a set 
of items and sales predicted by some model, and so forth. The stochastic behavior of the sequence is 
determined by the vector of parameters 8. For simplicity, we initially assume that all the components 
of this vector are of primary interest. Later in the text we address the case where behavior of {Xi} 
also depends on nuisance parameters. In general, the vectors {Xi} can form a serially correlated 
sequence; however, to simplify the presentation, in what follows we will assume independence except 
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where stated otherwise. Denote the most recent moment of time by T and the corresponding most 
recently observed observation by XT. Denote the joint distribution of m most recent observations 
by f@T--m+l, . . . , XT-i, XT), and denote its natural logarithm (the log-likelihood) by Lm(8). 

To set up the problem of detection, one should first specify the acceptable region Re in which 
8 should reside under normal operating conditions and the unacceptable region, Ri. Note that the 
union of Rs and Rs does not need, in general, to cover the whole parameter space: there will generally 
exist a “grey” area in between. This three-zone approach is motivated by practical convenience: in 
many industrial applications an engineer will have no difficulty specifying areas that are distinctly 
“good” or “bad”; however, dividing the parameter space into two regions to separate “good” values 
from “bad” ones could prove to be a challenge. 

Performance of detection schemes is typically measured in terms of the Run Length (RL), a 
random variable representing the number of observations taken until a signal is triggered. In general, 
one would like this variable to be large when 8 E no (i.e., a low false alarm rate) and small when 8 E 
Ri (i.e. good sensitivity with respect to out-of-control conditions). The most popular measure is the 
Average Run Length (ARL); however, design of control schemes based on quantiles and probabilities 
of RL has also been developed and supported in public domain software (see [5]). 

Now let us denote, for a given set of last m observations, 

(2.1) 

Denote by ms the minimal depth of data m for which 8 is estimable. Then one can define a general 
strategy that leads to powerful control schemes as follows. 

Likelihood Ratio (LR) Strategy: Trigger an out of control signal at time T if D& > h for 
some m 2 ms and pre-specified threshold h. 

The above strategy leads to powerful procedures for a wide class of situations involving control 
of univariate and multivariate processes with or without serial correlation (see [2], [4]). Since it is 
not convenient for practical use (as it requires one to examine the whole data set to reach a decision 
whether a signal is to be triggered at time T), any practical application of the LR strategy involves 
choosing a window of size M and triggering a signal only if D& > h for values mc 5 m 5 M. In effect, 
this amounts to running a truncated SPRT backwards in time. As shown in [6], in the univariate 
case one can achieve asymptotic efficiency of the LR test by examining only a subset of values m. 
However, this approach could still require a search going deep into history to establish whether a 
signal is to be triggered. 

In [‘i’] an alternative procedure, the Regenerative Likelihood Ratio (RLR) is introduced. This 
procedure calls for determining the depth MT dynamically, based on the previous history: 

Regenerative Likelihood Ratio (LRL) Strategy: Given that at time T the last regeneration 
point was registered MT units of time ago, trigger a signal if 0; > h for some me 5 m 5 MT. If 
D& 5 0 for every ms 5 m < MT, declare T the new regeneration point. 

When the observations are univariate and their distribution belongs to an exponential family, the 
LR and RLR strategies are equivalent (see [7]). The latter paper also discusses the relative merits of 
these approaches. In what follows, we limit our attention to the RLR schemes. 

In some applications one may want to consider simplified versions of the RLR strategy. One 
possibility ‘is to examine only selected values of m in the interval ms 5 m 5 MT (for example, every 
k-th value) in the process of deciding whether a signal is to be triggered at time T. This point in time 
is declared the new regeneration point if 0: 5 0 for every na on the k-spaced grid. When k -+ 00 
this policy essentially amounts to running a sequence of SPRT tests and declaring a point at which 
HO : 8 E Rs is accepted to be a new regeneration point. In general, it is advisable to include me 
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in the set of values of m to be examined - this will assure that changes of large magnitude will be 
detected quickly. Thus, one can consider using another simple scheme that examines only two values 
of m, namely, mo and MT, and declares T the new regeneration point if D& 5 0 for both these 
values. One can see that in the case where both 0s and Re contain only one value (the simple vs. 
simple hypothesis case) this approach scheme is very similar to the well known Cusum - Shewhart 
scheme (see [8], [5]), but differs from the latter in one important aspect that greatly simplifies the 
design process: it has only one parameter (h) instead of two. Other simplified forms of the RLR 
strategy can be found in [7]. 

In general, when considering a simplified RLR scheme, one should take in consideration not only 
sacrifices this will require in terms of the ARL curve (they frequently turn out to be quite tolerable), 
but also the way in which nuisance parameters are handled in the particular application. Let us 
denote the vector of nuisance parameters by r). Then we can define 

LL, = max L,, 
fkkh9 

Lk,, = max L,, 
h-h ,q 

D:, = L;, - L;,, (2.2) 

and apply an RLR scheme in the way described above (the value ms will have to be large enough 
to enable one to estimate not only B but also r~ ). In this mode we will assure that even an abrupt 
change in q will not prevent us from detecting unfavorable changes in 8 reasonably fast; simplified 
RLR, however, could be much slower in detecting changes in 8 under such circumstances. 

In situations where changes in Q tend to be infrequent, one can chose to obtain an estimate of its 
current value at time T and treat it as a known quantity. In the process of estimating the current 
value of r) one will typically use (explicitly or implicitly) data that extend beyond the window MT; 
for example, one can use exponentially weighted averages or other filtering techniques. Several such 
techniques are discussed in the sections 4 - 6. In situations of this kind simplified RLR schemes tend 
to be less vulnerable. 

The above summary only relates to the frequentist approach to the problem of detection. In 
the literature one can find a number of techniques that stem from the Bayesian approach to this 
problem that cannot be discussed here because of the limited scope of this article (e.g., see [3], [9] 
for information and references on this topic). 

3. EXAMPLE: MONITORING A VARIANCE COMPONENT 

Consider the problem of monitoring characteristics of oxide thickness in the process of manufac- 
turing Integrated Circuits (chips) used in computing devices. Chips are typically processed as part 
of a wafer (thin disk about 20 cm in diameter; a wafer contains approximately 200 square shaped 
chips). Consider a specific process step which deposits a thin layer of silicon oxide onto the surface 
of a wafer. In this step, wafers are typically handled in lots of about 20. To monitor oxide thickness 
a sample of R wafers is randomly selected from each lot and N measurements are taken from each 
wafer. We assume that these measurements follow a nested random effect model, 

Xirn = P + Li + w,(i) + -%rn, i=1,2 ,... r=1,2 ,... R, n=1,2 ,... N, (3.1) 

where Xi,, is the thickness corresponding to the n-th site on the r-th wafer of the i-th lot, p is the 
grand process mean, Li w N (0, Q,) is the random effect of the i-th lot, W*(i) N N (0, crtu) is the nested 
effect of the r-th wafer in the i-th lot and Ei,* N N (0, a) is the random noise representing the efect 
of the n-th measurement taken from the r-th item of the i-th lot. 

Let us focus our attention on monitoring the wafer-to-wafer component of variability, u,,,. In most 
applications, Qc and &I are of the form u, 5 U,O and uw 1 ~~1, respectively, where uwo < owl are 
fixed based on engineering considerations. In this case the nuisance parameter is a; to simplify the 
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notation, we use it in a different form, namely, I) = a2/N which represents the part of the variance 
of the wafer averages that is explained by the within-wafer variability. Monitoring of a,,, is based on 
the sequence of bivariate statistics, {&f., #} defined by 

’ 
” = NN - 1) r=l n--l 

5 5 (Xim - Jfiir.)2 , (3.2) 

where ii = & C,“=r C,“==, Xi,, and X+. is the average of the N measurements taken from the r-th 
wafer of the i-th lot. 

The log-likelihood based on the last m lots is given by 

L, (Q,,,, 7 1 (ii.,+, i = T - m + 1,. . . ,T) O( C - mvl [ln(cri + ‘7) + Mi/(a$ + q)] - 
-mu2 IIn9 + M2hl 

(3.3) 

where C does not depend on the parameters, 

Ml=+. $ Cf. ‘d&f (ui + q)Vi [mvl] , M2 = i 
T 

c *f/N et vfi [mvz] . 
I=T-m+l s=T-m+l 

are sufficient statistics related to uw and T], vi = R - 1 and 212 = R(N - 1) are degrees of freedom 
associated with 6!. and Bf, and Vj[ v is a Chi-square random variable with v degrees of freedom ] 
divided by v (note that VI and V2 are independent). 

Now let us introduce the function n*(gw) which, for every uw returns the value 9 that maximizes 
the likelihood. Then one can show (see [7]) that LLn, and Lhl are determined as follows: 

(a) Ifku 5 ~~0 set Lh, = L,(cF-,,i) and tti = Lm(~wl,q*(uwl)). 

(b) If GO < b, I ~1 set -Go = &,,(~,~,rl*(~~~)) and Lhl = Lm(~w~r f(ud). 

(c) If 6w > u,i set Lk, = Lm(&w,i) and L&, = Lm(uw~,~*(uwo)). 

Now construction of an LR (or RLR) scheme is straightforward. The computations are greatly 
simplified by the fact that in the case (a) the score D& is negative and thus it does not need to be 
computed. An example illustrating application of this scheme can be found in [7]. 

4. FILTERING IN THE PRESENCE OF ABRUPT CHANGES 

In many practical situations involving abrupt changes in the process parameters the most impor- 
tant problem is not detection but rather estimation of the current level of parameters, i.e., filtering. 
This situation typically arises when one is able to neutralize the effect of unfavorable changes by 
making adjustments to the process. For example, consider the problem of contamination control 
in the process of chip manufacturing. Periodically, test wafers are introduced in various processing 
stages with the purpose of examining the contaminating particles that land on their surface. Detec- 
tion schemes are then used to trigger a signal once particle counts become “large”. However, process 
steps are typically followed by washing the wafers; the washing regime can be adjusted based on 
the current level of contamination. In this situation the problem of filtering is clearly of primary 
importance, even though the problem of detection also cannot be neglected. 

Though the filtering problem can be formulated independently of the nature of 8, in this section 
we limit ourselves to the case where the parameter of interest is the mean of Xi; only the method for 
selecting the last stable regime from the sequence {Xi} will be formulated in a more general form 
because of its special importance. In the next section we give a brief summary of the case when 8 is 
a vector of regression slopes. 
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The filtering problem for the mean has been discussed in a number of works (see [lo] - [li’]). 
Typically, this problem has been addressed within a Bayesian framework, with some prior distribu- 
tions associated with location and magnitude of changes. In [16]-[17] a non-Bayesian approach is 
introduced. This approach is based on the loss function, for example, 

L(Pi~Pi) = II& -Pill& = @i-b4)Tx71(fii-Pi)7 (4.1) 

where fii and pi are estimated and true means of Xi, and Bi is its covariance matrix. The approach 
first limits the attention to the class of estimation schemes {hi} that generate the same loss per 
unit time in the absence of abrupt changes. Within this class, best schemes are chosen based on 
the concept of inertia which measures the excess loss associated with estimation following an abrupt 
change that is due to absence of a-priori knowledge about its location and magnitude. 

In what follows we assume that ,??; is known and equal to ZY (generalizations to the case of 
unknown xi can be found in [16]-[17]). In both cases the optimal linear scheme under the stated 
conditions is the multivariate Exponentially Weighted Moving Average (EWMA), see (171. However, 
if changes in /.J are not a-priori known to be of small or moderate value in relation to ZI, the 
EWMA schemes cannot be recommended for use: for example, they can produce estimates that are 
inconsistent with the most recent observations. This drawback can be eliminated by switching to 
Markovian schemes defined by a suitable initial value fie and the process 

fii = xi + dllfii-I - XillE) (&-I - xi) !  (4.2) 

where 0 5 v(z) 5 1 is some non-increasing function defined for z 2 0. Two functions recommended 
in [17] are defined in terms of two parameters: 

cpl(.z) = y 
{ 

2 5 4-f 
4% f > cl7 

(4.3a) 

and 
~2(2) = 7 exp [-0.5(~lP)~] . (4.3b) 

The parameter c (or p ) is used to determine the shape of the inertia function with respect to 
changes of various magnitudes and 7 is a smoothing parameter that is used to establish the desired 
level of steady state loss per unit time in the absence of changes. In most practical applications y is 
chosen between 0.7 and 0.95. Note that when P(Z) 5 z the scheme (4.2) reduces to the multivariate 
EWMA scheme. 

When changes of large magnitude are common, better procedures are obtained by estimating, at 
any point T, the value of VT, which represents the number of observations taken after the last point 
of change in the parameter of interest, 8 (as noted earlier, in discussing this subject we consider a 
general parameter, not necessarily the mean; the formulation will also take into account the possibility 
of serial correlation in the sequence of observations). To be more precise, the estimate +T will specify 
the number of observations that are declared to be relevant when computing the current level of 0. 
The value +T will be called the last stable mnge (LSR) estimate. 

The procedure for obtaining +T introduced in [16]-[17] p roceeds sequentially from the current 
point T back into history and stops when the likelihood ratio test rejects the hypothesis that the last 
data segment can be explained by a single level of 0. At this point, all the preceding observations 
are ignored and +T is estimated. 

Denote 

M(n; T) = e l<“<“--, 8 bf(XT, XT-l,. . . XT-n+llXT-n? . . . xl; HO,? el), (4.4) 
0, -7-n 3 1 
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where f is the conditional density of the last n observations computed under the assumption that the 
last r observations correspond to the parameter 80 and all the preceding observations correspond to 
the parameter 81. The value of r for which the maximum is achieved is denoted by r(n; 2’). Similarly, 
denote 

n/r,(n;T) = me~logf(XT,XT--lr...XT--n+llXT-nr... ,X1;@), (4.5) 

where f is the conditional density of the last n observations computed under the assumption that all 
of them correspond to the parameter 8. Now the procedure for deriving f~ is formulated as follows: 

Procedure A: Select a positive threshold h and, for n = 2,3,. . ., compute 

d(n; T) = M(n; T) - Mo(n; T), (4.6) 

until for the first time d(n; 2’) > h. At this point, set in = r(n; T). If n = T is reached and 
d(T; T) < h, set in = T. 

Of special interest is the case where {Xi} are independent Gaussian with mean pi and known 
X, and the filtered parameter is the process mean. In this case the procedure of obtaining in is 
especially simple since 

d(n; T) = 
1 <Y-z- 1 -- 

~llffT(r) - x*-,(n - r)&, 

where XT(T) = r-l Cj’=, X~-j+l. 
Once f~ is obtained, one can use the following procedure to obtain j&, which is defined in terms 

of two parameters, the threshold h > 0 and smoothing parameter, 0 < y 5 1: 
Adaptive Exponentially Weighted (AEW) Scheme: 
Stepl: Find ?T by using Procedure A; 
Step2: If f~ = FT-~ + 1 then set 

liT = fiT-l + &&(xT - fiT-1). (4.3) 

Otherwise, set 
b. = (XT + YXT-1 + ’ ’ . + +%-+*+I) 

(l+y+~.~+y+‘) (4.9) 

Note that all the schemes discussed in this section reduce to the multivariate EWMA with pa- 
rameter y when the second parameter (c, p or h) tends to infinifty. 

Several examples illustrating use of the above methods in problems related to chip fabrication 
can be found in [16]-[17]. 

5. WEIGHTED LIKELIHOOD AND ITS APPLICATIONS 

In this section we discuss generalizations related to weighting the observations. We introduce the 
weighted likelihood technique and show how it can be used in problems of detection and filtering. As 
one will see, by using this concept one can easily extend the methods used above to obtain filtered 
estimates of the process mean to cover the case of filtering a more general parameter, 8. 

Let we,wl,... , wm-l be weights associated with XT, XT-I,. . . , XT-m+l, respectively, for any 
fixed m (in other words, we is associated with the last observation, w1 - with the previous one, 
etc.). The weights generally decrease to provide emphasis on the most recent information. Then the 
weighted log-likelihood function corresponding to the last m observations is given by: 

Lk)(O) = 5 WT-i lOgfe(Xi]Xi-1, Xi-z,. . .). (5.1) 
i=T-m+l 
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First, let us illustrate the use of weighted likelihood in the problem of detection. In light of the LR 
approach described in Section 2, one can construct weighted Likelihood Ratio control schemes by 
defining 

and triggering an out of control signal at time ‘I’ if 02’“’ > h for some m 2 mc and threshold h. 
Schemes of this type are called weighted LR control schemes of type 2. As shown in [3], schemes of 
this type enable one to improve performance with respect to drifts in 8 with minimal performance 
loss with respect to shifts. In many practical applications it is convenient to choose weights of type 
wi = y’, i = O,l,... which lead to Geometric LR schemes. Weighted RLR schemes can also be 
easily constructed based on (5.2). 

Now let us return to the problem of filtering. As we saw earlier, in the case of filtering p a simple 
approach to this problem is to begin with the EWMA and modify it so as to obtain acceptable 
performance, in terms of inertia, with respect to larger changes. When the parameter of interest 8 is 
not the process mean, the approach to filtering can be developed along similar lines. First of all, we 
begin with an estimating scheme that performs well when changes in 8 are small or moderate, and 
then we modify this scheme to accommodate the possibility of larger changes. 

To obtain an equivalent of the Weighted Moving Average scheme we introduce the concept of 
Weighted Maximum Likelihood (WML) estimation. In particular, the WML estimator 8~ based 
on the last m observations is the value of 0 that maximizes L, ‘“‘(0). When m = T and weights 
are decreasing geometrically, the WML estimator can be viewed as an analog of the EWMA filter, 
and (with proper selection of weights) it leads to schemes that have a good performance, in terms 
of inertia, when changes in B are small or moderate. Such an estimator will be called an EWML 
estimator. 

Modification of the WML so as to obtain an estimator of the current value of 8 that is capable of 
adapting to large changes in 8 can now be achieved by using the following Principle of Consistency: 
the density of the most recent observation XT computed under the assumption that 8 = 8~ must 
always be consistent with XT in the sense that this observation does not fall too far into the tail of its 
estimated density. In the case of estimating the current level of p the above principle was enforced by 
supplementing the smoothing parameter y  with an additional parameter (c, /3 or h, depending on the 
chosen scheme). In the more general case of estimating 8 one can also introduce such an additional 
scalar parameter. For example, an AEWML scheme (analogous to the AEW scheme of Section 4) 
can be easily constructed by combining the Procedure A with the WML estimate based on PT. 

WML is not the only filtering technique which enables one to put a larger emphasis on the most 
recent information. In many cases one can also obtain Weighted Least Square (WLS) estimates by 
minimizing the sum of squares of weighted residuals. When weights associated with the residuals 
decrease geometrically, we call this method the Exponentially Weighted Least Squares (EWLS) es- 
timation. The WLS estimators can be adjusted to accommodate large changes in 8 by using the 
methods described in the previous paragraph. For example, in combination with the estimate +T of 
the last stable range, the above scheme will be called the AEWLS scheme. 

Of special interest is the problem of estimating the current value of multivariate regression slopes 
considered in the next section. 

6. ESTIMATING THE CURRENT REGRESSION SLOPES 

Consider the multiple regression case, where the observations {yi} are coming from the model 

yi = Xi’fl; + Eir i = 1,2,. . ( (6.1) 
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where xi is a vector representing the independent variables, pi is the vector of slopes and ei is the 
noise (all the bold-letter vectors discussed below are k - dimensional column-vectors). For simplicity, 
we only consider here the case where measurements at different points in time are independent and 
e; is Gaussian with mean zero and variance that is known and equal to u2 for all i. 

Denote the WML estimate of pi at time T based on the last m observations by p*(m). This 
estimate is obtained by minimizing the weighted error sum of squares, 

WT-ibi -%'Pi127 

i=T-m+l 
(63 

with respect to p (as one can see, in the Gaussian case the WML and WLS methods produce identical 
estimates). This results in a well known WLS estimate 

Bdrn) = (x’wx)-‘x’w(YT, ?/T-l,. . . ,YT-m+l)‘r (6.2) 

where rows of X contain the vectors XT’, XT-i’, . . . , XT-*+I’, and W is the matrix of weights; in our 
simple case W = diag (we, ~1,. . . , ~~-1). 

Of special interest is the case u+ = y’, i = 0, 1, . . . . In this case one can show that /.!lT(m) can 
be computed recursively, based on &-i(m - 1) and the most recent observation. Denote GT(m) = 
(x’wx)-‘. This matrix is always stored in the process of recursion; thus, at time T we have 
Gr-i(m - 1) and fiT-r(m - 1) available. The updating process is then as follows: 

EWLS filter for pi: 

Step 1: Compute the direction of change, ZT = GT-i(m - ~)OXT. Define Z%T = ZT(~+XT’ZT)-‘. 

Step 2: Update the estimate: fir(m) = &i(m - 1) + ET l [YT - xT’&-i(m - l)] (6.3) 

Step 3: Update the inverse: GT(m) = GT-i(m - 1) - &zb. 

This process holds also when the previous history is infinitely deep, i.e., m = co. 
Unfortunately, the above process suffers from the same drawback as the EWMA: it tracks large 

changes slowly. To implement the Principle of Consistency stated in the previous section we can use 
several approaches; the simplest one is to adjust we upwards until the predicted value of YT falls 
within some tolerable distance (say, cg) from the observed YT. A choice of c % 2 is reasonable in 
many practical situations. In EWLS schemes one can apply the procedure as described above if 

k/T - zT’bT(m)l = $7 + ~T’zT)-‘lyT - zT’bTvl(m - 1)1 5 cc. (6.4) 

Otherwise, we should include one additional step (following Step 2) in the above procedure: 

Step 2a: If  (6.4) is not satisfied, compute r* = 2T’zT ]yT - [ =T’&(m)l/(cu) - 11-l (6.5) 
and repeat Steps 1 to 3 with 7 = y’. In subsequent estimation, however, use the original value of 7. 

It is also not difficult to obtain an AEW version of the filtering scheme for pi. In this scheme we 
always store the last stable range, id-1, and the associated values GT-1(+-i -1) and &-i(P~-i - 1). 

AEWLS filter for pi: 
Stepl: Find fT by using Procedure A; 

Step2: If  in = i~-i + 1 then obtain &(i~) by executing Steps 1 - 3 of the procedure (6.3). 
Otherwise compute &(PT) by using (6.2); save Go for future use. 
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It is not difficult to see that in the case of intercept - only model with k = 1 this procedure 
reduces to the AEW procedure for estimating the current mean given in Section 4. 

Numerous issues arise in relation to use of the above techniques in practice. For example, one 
can show that the procedures for estimating & when the variance is unknown can be generalized for 
the regression case. Another interesting issue worth mentioning is how to handle situations where 
+T < me, i.e., the last stable range is identified more or less correctly, but it does not contain enough 
data to estimate PT. In situations like that there will always be exposure in terms of loss and a good 
strategy to follow depends on the nature of changes in p expected in the application of interest. In 
some cases one can even get away with refusing to produce an estimate until information sufficient for 
identification of the new regime becomes available. One can also consider using a Bayesian approach 
to handle such situations. Because of the limited scope of this article discussion on these issues will 
be omitted. 

7. CONCLUSIONS 

Situations in which data can be viewed as being generated by models with change - points are very 
common in industry, especially in areas related to Quality Control. In this article we presented several 
methods for handling two of the most important problems: detection of changes in 0 and estimation 
of its current level. These methods are based on the concept of Likelihood and Likelihood Ratio 
and they do not require assumptions about the process of changes. Especially useful in practical 
applications are the FUR detection schemes that are statistically powerful, easy to design and to 
implement. In my opinion, this method is likely to play a major role as the industry moves from the 
statistical methods prevalent in the first half of this century to more modern techniques. It can be 
viewed as the natural generalization of the conventional Cusum schemes to cover more complex data 
models, such as multivariate time series. 

To address the problem of filtering in the context of change - point models we propose several 
methods all of which can be viewed as the generalization of the basic EWMA technique. Our approach 
is similar, in spirit, to the Neyman - Pearson approach to hypothesis testing: first, we restrict our 
attention to the class of schemes that can be viewed as “equivalent” under steady state conditions, 
and then we select schemes that show the best tracking capability. The concept of LSR is very useful 
and I believe that the Procedure A formulated in Section 4 will catch on in the engineering community. 
An interesting question remains whether exponentially decreasing weights are the best ones to use 
in conjunction with the Procedure A, as suggested in the AEW scheme. This choice is definitely the 
easiest to implement because it typically results in simple recursive schemes and, therefore, one can 
expect it to be used extensively, even in some cases where it can be proven sub-optimal. 

A large number of issues arise in relation to any given practical case where use of such techniques 
is considered. How to determine “good” and “bad” process windows? How to handle the nuisance 
parameters? Should ,any transformations be applied to the data? What are the relevant sources of 
variability? Is there any serial correlation present and, if yes, what is its origin and nature? What 
modifications are needed if presence of outliers cannot be ruled out? How to obtain good performance 
estimates? What actions to take when we are quite confident that we are into a new regime but there 
is not enough data to estimate its characteristics? Under what conditions should we consider Bayesian 
methods more suitable? In any more or less complex situations designing a robust monitoring system 
involves not only solid science but also a great deal of art. 
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